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Abstract 

Flexibility is a key dimension of creativity. Classroom discourse, which promotes 

mathematical flexibility, has been highly valued. Past studies have established evidences 

that learning mathematical flexibility, e.g. by attempting and discussing alternative 

solutions to multiple-solution tasks, leads to enhanced mathematical learning and 

performance. However, few studies have addressed how such learning should take place 

systematically for an optimal result. This preliminary study explored the learning of 

mathematical flexibility in an adapted constructivist 5E learning model. Conceptual 

variability in nine purposively sampled A-Level participants’ solution strategies for 

solving three multiple-solution tasks pertinent to Quadratics were qualitatively examined 

and compared before and after the 5E intervention. The findings generally revealed the 

participants’ enhanced flexibility and accuracy in producing conceptually-varied solutions 

to the quadratic tasks upon intervention. The constructivist 5E learning of mathematical 

flexibility provides a guide to classroom discourse as to how the learning of mathematical 

flexibility may systematically take place. 

       

Keywords: mathematical flexibility, constructivist 5E learning model, conceptually-

varied solutions to multiple-solution tasks 

 

Introduction 

When flexibility comes into play, many mathematical tasks are self-evidently 

multiple-solution tasks which can either lead to a wide range of possible answers or be 

solved in two or more ways. For instance, ‘What two integers have a sum of 10?’ at the 

primary level, ‘What are the dimensions of a rhombus whose area is 10 cm2?’ at the lower 

secondary level, and ‘What is the shortest distance from the point (2, 5) to the line y = 3x 

+ 8?’ at the high school level, are all multiple-solution tasks. The teaching and learning of 

mathematical flexibility is critical and highly valued. National Council of Teachers of 

Mathematics (NCTM, 1991, 2000) asserts that students should be engaged in 

mathematical discourse about problem solving which includes discussing different 

solutions and solution strategies for a given problem. Similarly, the National Research 

Council (1989) emphasizes that mathematical learning should entail motivation for 

moving beyond just mathematical rules to also focus on seeking solutions (i.e. not just a 

solution by memorizing procedures), exploring patterns (i.e. not just memorizing 

formulas) and formulating conjectures (i.e. not just doing exercises). Numerous studies 

have established the evidence of potential benefits students may gain from exposure to 

alternative solutions, flexible use of strategies, and deliberate exploration and comparison 

of possible solutions (Elia, Heuvel-Panhuizen, & Kolovou, 2009; Greer, 2009; Heinze, 

Star, & Verschaffel, 2009; Newton, Star, & Lynch, 2010Rittle-Johnson & Star, 2007, 

2009; Star & Rittle-Johnson, 2007). In addition, students having knowledge of multiple 

solutions have been found to make instructional interventions more effective (Alibali, 
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1999; Siegler, 1995), and are better able to deal with both near- and far-transfer problems 

(Hiebert & Carpenter, 1992). However, few studies have addressed the pedagogical 

aspects of teaching mathematical flexibility. Consequently, teachers lack an informed 

decision as to how students could gain flexible knowledge more systematically. 

 

Objective 

This study explored the pedagogical impact of learning mathematical flexibility in 

an adapted constructivist 5E learning model as intervention. Specifically, the study aimed 

to qualitatively explore the change in nine purposively-sampled A-Level participants’ 

ability to employ alternative solution strategies for three quadratic tasks as well as the 

change in the level of precision of their solutions upon the intervention. 

 

Research Questions 

In particular, this study aimed to answer the following questions: 

1) How will the A-Level participants’ ability to produce multiple solutions to 

quadratic tasks change upon the intervention?  

2) How will the accuracy of their solutions change upon the intervention? 

 

Theory 

Mathematical flexibility. Flexibility is a key attribute of creativity. It primarily 

refers to switching smoothly between different strategies (Guilford, 1959; Selter, 2009; 

Stein, 1974; Torrance, 1969). Verschaffel, Luwel, Torbeyns and Dooren (2009) referred to 

flexibility as use of multiple strategies. Star and Rittle-Johnson (2007) as well as Star and 

Seifert (2006), however, defined flexibility in solving linear equations as knowledge of (a) 

multiple strategies and (b) the relative efficiency of these strategies, perceiving efficiency 

as an intrinsic attribute of flexibility. 

In this study, we view mathematical flexibility as the ability to employ, in 

particular, conceptually-varied solutions for multiple-solution tasks (Low, 2015). 

Conceptuallyvaried mathematical solutions do not differ only in procedures (e.g. simply 

different orders in solution steps) but also the use of different concepts in arriving at the 

solutions. 

 

Constructivist 5E Learning Model. The constructivist 5E learning cycle is a 

research-oriented, phase-based instructional model which lends systematic strategies to 

instructional implementation. The 5E learning cycle consists of five phases, namely 

engagement, exploration, explanation, elaboration, and evaluation. Bybee, Taylor, 

Gardner, Scotter, Powell, Westbrook and Landes (2006) elucidate the essential nature and 

the instructional objectives of the five phases. Further details follow. 

Engagement phase. In general, this phase is aimed at arousing the students’ curiosity so 

that they could be motivated and gain a sustaining interest in the instructional task in hand, 

and are in a mode ready for further exploration. In addition, it is also to expose students’ 

misconceptions, if any, so that cognitive disequilibrium could be made sufficiently explicit 

to be dealt with in the subsequent phases. 

 Exploration phase. Being engaged, the students then begin to explore concepts, 

ideas, relationships, patterns, etc. and gain hands-on experience in dealing with the task in 

hand.  In the exploration phase, the instructor only serves as a facilitator to orientate 

students’ exploration without providing any explicit solutions. However, students ought to 

be given sufficient encouragement and freedom to explore own ideas and thinking.  

 Explanation phase. This phase sets a platform for the students to share their 

observations and beliefs, followed by the instructor’s clarifications when needs arise. It 
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then serves to help students in ordering their exploratory experiences and mental 

structures. Any relevant concepts, processes, or skills have to be presented concisely but 

clearly before the students move on to the subsequent phases.  

 Elaboration phase. In this phase, attempts will be made to facilitate transfer of 

concepts to closely related but new situations. Students can be engaged in group 

discussion, giving opportunity for individual students to extend the ideas learned earlier 

and to elaborate on the conception of the task and other strategies which could possibly 

contribute to the task completion. Students ultimately gain the opportunity, via group 

discussions and cooperative learning, to express their understanding of the subject under 

study, exchange ideas and learn from peers of similar levels of understanding. More 

critically, this elaboration phase allows for transfer of identical explanations and 

generalization of concepts, process, and skills.  

 Evaluation phase. Evaluation could occur across all phases. It provides the 

opportunity for students to evaluate their understanding. Be it a formative or summative 

evaluation, the students should receive feedback either from the more capable peers or the 

instructor so as to ascertain the achievement of the required educational outcomes. 

The 5E learning model is fundamentally based on the constructivist premise that 

interaction exists between a learner’s prior knowledge and the target learning contents in 

the formation of new knowledge, and that the efficacy of knowledge construction also 

relies on social interaction among peers and the instructor. As such, it is critical to 

positively engage learners so that they could sustain their interest to explore ideas and 

have the opportunities to share and express their understandings, both individually and in 

groups. In other words, the constructivist perspective focuses on practical exploratory 

knowledge construction, which is believed to be critical for conceptual development, 

rather than passive theoretical knowledge transfer. Equally emphasized is the need to 

evaluate the learning process throughout the entire learning cycle. In short, constructivist 

inquiry learning undergirding the 5E model underlies not only the declarative content 

knowledge, but also the pedagogical content knowledge, which would assist learners in 

constructing meaningful concepts and knowledge. Experimental results generally 

demonstrate strong and statistically significant gains in student achievement, across 

varying student abilities (Pinkerton & Stennet, 2007). 

 

Theoretical framework of the study: Figure 1 shows the theoretical framework 

which embeds the learning of mathematical flexibility in an adapted constructivist 5E 

learning model. While most studies have employed the 5E model sequentially particularly 

in scientific inquiry, other educators and researchers, such as Eisenkraft (2003) and TUNA 

and KAÇAR (2013), have suggested that the 5E learning cycle may not be necessarily 

linear. In particular, they assert that formative evaluation should not be exclusive to a 

particular phase of the learning cycle, but must take place in every phase during all 

interactions with students. 

In this study, we contend that, unlike scientific inquiry, learners could be nonlinearly 

led into any phase of the 5E cycle flexibly and conditionally, taking into such 

considerations as the nature and complexity of mathematical contents and explorations, 

the participants’ prior knowledge, response and needs, as well as the availability of time in 

a lesson. For instance, when misconception of an idea surfaces during an explanation 

phase, learners could be led to further explore (i.e. into exploration phase) the idea, re-

engaged (i.e. into engagement phase) by scaffolding the discussion, at the same time, 

required to critically evaluate (i.e. into evaluation phase) by comparing and contrasting the 

faulty conception with the emerging new ideas. This explains the flexible nonlinear 

pplication of the 5E learning model in this study as illustrated in Figure 1.  
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Table 1 illustrates the leading questions for orientating the learning of 

mathematical flexibility via the adapted 5E learning model, which serves as a pedagogical 

tool for systematically yet flexibly orientating the instructional phases to facilitate students 

in dealing with multiple-solution tasks. 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 1. Flexible nonlinear application of the 5E learning model 

 

Table 1 

Leading questions for mobilizing the 5E learning of mathematical flexibility 

The 5 E’s Leading Questions 

Engage 

To engage students, elicit their 

prior knowledge, arouse their 

interest and curiosity, set the mode 

for further exploration 

 

 

What do you think is the solution to this task? 

Do you believe it can be solved in more than one way? 

Can multiple-solution strategies be employed? 

 

Explore 

To explore possible solutions to 

the task in hand, determine and 

implement a strategy to see if a 

solution works, explore the 

relations of the solution to the 

pertinent mathematical  

concepts/properties/operations 

 

 

What mathematical properties/concepts/operations have 

you employed? 

What are other solution strategies that could be 

applicable? 

Do the employed strategies work? 

How would you relate your solutions to the pertinent 

mathematical concepts? 

 

Explain 

To explain the solutions and the 

strategies employed, and their 

appropriateness 

 

 

How/Why do your strategies work or not work? 

Why is a particular strategy adopted or deemed 

appropriate? 

How did you think of using this strategy? 

Why do you like or dislike the solution strategies? 

 

Elaborate 
To extend to other possibilities or 

alternative solutions, attempt to 

interpret the problem features from 

different perspectives or in a new 

light 

  

 

Could there be any other solution strategies that are 

equally applicable? 

Can other mathematical concepts/properties be possibly 

relevant and applicable? 

Can you apply your strategies to other dissimilar but 

conceptually-similar tasks? 

Can your solutions be possibly ‘trimmed’ so that they 

look more efficient and elegant? 

 

Engagement 

Exploration 

Explanation Elaboration 

Evaluation Mathematical 

Flexibility 
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Evaluate 
To evaluate the attempted solution 

strategies, their implications, 

advantages and disadvantages 

 

 

What are the advantages or disadvantages of the 

solutions you have attempted? 

How could each solution be enhanced? 

Do you think all the solution strategies employed have 

the same quality, i.e. efficiency, elegance, intelligibility? 

What is your most preferred solution? Why? 

 

 

Literature Review 

 

Mathematical Flexibility 
The importance of promoting mathematical flexibility by emphasizing varieties of 

solutions, thus allowing freedom of choice in student learning, has received considerable 

attention even since a few decades ago (Freeman, Butcher, & Christie, 1971; Fremont, 

1969; Rogers, 1983). Inculcating the predisposition toward possible strategies with 

profound reasoning rather than just emphasizing correct strategies in the learning culture 

has been a primary concern in mathematics education (Baron, 1988; Garnham & Oakhill, 

1994; Lithner, 2003, 2008; Stacey & Vincent, 2009; Stein, Grover, & Henningsen, 1996). 

“By encouraging diverse strategic solutions and requiring students to explain these to 

others, children will realize that there can be more than one way to work things out and 

that mathematics is about methods as much as it is about right answers.” (Cowan, 2003, p. 

44). 

Peterson (1988) argued that “most higher-level mathematics responses have more 

than one right strategy that can be used to obtain the answer” (p. 11). As such, 

instructional focus should not aim at merely getting the right answers, but various 

strategies for effective problem solving. Silver, Ghousseini, Gosen, Charalambous and 

Strawhun (2005) claimed that comparing, reflecting on, and discussing multiple solution 

methods would improve student learning. Pupils’ low competence in using different 

representations of functions in problem solving had been attributed to the lack of 

flexibility in approaching functions (Elia, Panaoura, Eracleous, & Gagatsis, 2007). 

Despite the copious research evidence pointing to the potential benefits of 

mathematical flexibility in mathematics learning, few studies have ventured into the 

pedagogic aspects of learning mathematical flexibility. What learning process would lend 

itself well to the learning of mathematical flexibility? While mathematical flexibility, e.g. 

the ability to produce alternative solutions to a task, may require substantial engagement to 

explore and reason about possible solutions which in turn provide learning opportunity by 

comparing and evaluating different solutions (Rittle-Johnson & Star, 2007, 2009), the 

constructivist 5E learning model appears to be a promising framework for learning 

mathematical flexibility. 

 

Constructivist 5E Learning Model 

The 5E learning model has been ubiquitously employed since its inception in the 

mid-1980s and proven to be effective particularly for the learning of Sciences, which lend 

themselves well to inquiry-based experimental studies. The profound influence of the 5E 

learning model in the educational arena has been prominent (Bybee et al., 2006). 

The increasing focus on the use of constructivist, inquiry-based (such as 5E) 

learning models in teacher’s professional development programs convincingly speaks of 

its prominent influence (Browning, 2013; Hanuscin & Lee, 2008; Nuangchalerm, 2012; 

Pasley, Kannapel, & Fulp, 2010; Yalcin & Bayrakceken, 2010). Research findings and 
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reports on the effectiveness of the 5E learning model abound, especially in Science 

learning involving scientific inquiry (Bybee et al., 2006).  

Türk and Çalık (2008) shared the use of different conceptual change methods (i.e. 

conceptual change text, analogy and worksheet) embedded in a 5E learning model which 

was claimed to be effective for teaching the nuances of endothermic-exothermic reactions.  

Appamaraka, Suksringarm and Singseewo (2009) studied the effects of the 5E 

learning cycle with the metacognitive moves (characterized by intelligibility, plausibility 

and wide-applicability) and the teacher’s handbook approach on learning achievement, 

integrated science process skills and critical thinking of ninth-grade students. The study 

involved eighty-two students, half of which were randomly assigned to an experimental 

group with the metacognitive moves embedded in the 5E learning cycle, while the other 

half to a control group associated with the teacher’s handbook approach. Findings 

revealed that the experimental group generally showed better academic achievement, 

higher integrated science process and critical thinking skills. The effectiveness of the 5E 

learning model has been similarly confirmed in an investigation by Haribhai and 

Dhirenkumar (2012) who compared two instructional methods, namely the constructivist 

5E instructional model and the traditional lecture method, involving students from both 

urban and rural areas as moderating variables. Findings indicated that the use of 

constructivist 5E instructional model positively led to better achievement and retention for 

students from both urban and rural areas.  

Although little evidence is available to reveal the application of 5E model in 

domains other than the hard sciences, there is an increasing acceptance of it for the 

learning of such domains as mathematics and environmental education (Appamaraka et 

al., 2009; Birisci & Metin, 2010; Bybee et al., 2006; Nayak, 2013; TUNA & KAÇAR, 

2013). TUNA and KAÇAR (2013) investigated the effect of 5E learning model in 

teaching Trigonometry on students’ academic achievement and knowledge sustainability. 

Forty-nine tenth-grade students were involved, from which 25 students were randomly 

assigned to an experimental group and the remaining to a control group, based on their 

mathematics scores for the last (autumn) semester examination in 2009-2010 academic 

year as well as the scores in the pre-test prior to instructional intervention. Similar to the 

findings from other studies, results indicated that the 5E learning model contributed 

positively to both student achievement and permanence of knowledge.  

The opportunities from experiential and cooperative learning within a 5E 

framework could be very much beneficial. Robertson, Meyer and Wilkerson (2012) 

creatively designed an outdoor skateboarding activity based on the 5E learning model. In 

the learning process, students were engaged to practically explore both the mechanical and 

mathematical concepts (such as Forces, Motion, Newton’s Laws of Motion) involved in 

skateboarding via observation, data collection, group discussion, the opportunity to 

explain individual’s exploration and understandings, evidence-based inference in arriving 

meaningful conclusions, as well as own and instructor-led evaluations. The activity was 

found to be really exciting and engaging to learners and was deemed to be successful in 

ensuring deep conceptual understanding in bridging Algebra and Geometry in the real-life 

context of Mechanics study.     
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Methodology 

 

Research Design 

This study adopted a qualitative research design whereby the number and accuracy 

of nine A-Level participants’ solution strategies for three pairs of equivalent Quadratic 

tasks were compared throughout the 5E intervention over three separate sessions.   

 

Participants 

Nine A-Level students (5 males 4 females) participated in the study on purposive 

sampling and voluntary basis. They were all 18 to 19 years old and had just completed 

their secondary school studies. They were separated into groups of three based on their 

levels of flexibility assessed in the study by Low (2015). These participants were coded as 

L1, L2 and L3 (low flexibility group); M1, M2 and M3 (medium flexibility group); H1, 

H2 and H3 (high flexibility group). Such groupings ensured similar levels of 

understanding among group members. 

 

Measure 

The quadratic multiple-solution tasks employed were: 

 Before intervention 

1a) Express the function 2x2 – x – 6 in the form a(x + b)2 + c, where a, b and c are 

constants. 

2a) Find the stationary value of the function 2x2 – x – 6, and its corresponding value of 

x. State if the stationary value of the function is a minimum or a maximum. 

3a) Solve the inequality:    (x – 3)2 – 16 > 0. 

 

After intervention 

1b) Express the function 8 – 2x – 3x2 in the form a(x + b)2 + c, where a, b and c are 

constants. 

2b) Find the coordinates of the stationary point on the curve of function 8 – 2x – 3x2. 

State if the stationary point is a minimum or maximum point. 

3b)  Solve the inequality:    1 – (2x – 3)2  0. 

 

The Quadratics domain was employed in view of its moderate level of complexity and the 

prior knowledge of the participants. Quadratic functions are neither too simplistic as linear 

functions nor overly complex as other transcendental functions. The participants had 

learned about Quadratics from their secondary studies. However, the extent to which they 

could deal with Quadratics flexibly was initially unknown. 

 

Procedure 

 Setting: The nine participants were seated in the same row in groups of three. Three 

in a group facilitated discussion and exchange of ideas among the group members. Two 

video-recorders were in place, one facing the front board and the other facing the 

participants. Each group was given a video-recorder so that the group conversations could 

be captured for further analysis. However, this paper presents only the findings on the 

written multiple solutions of the participants. 

 Process: The participants underwent three sessions of learning mathematical 

flexibility with the adapted 5E learning model (i.e. Session 1: Tasks 1a and 1b, Session 2: 

Tasks 2a and 2b, and Session 3: Tasks 3a and 3b), on two consecutive days. At the 

beginning of the study, the participants were briefed on the adapted 5E learning model and 

assured of confidentiality. It was explained that a multiple-solution task could be solved in 
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two or more ways with different concepts. In each session, the participants were guided by 

a series of activities with proposed time limits (Table 2), which however were not meant 

for a slavish adherence. The participants were encouraged to freely explore possible 

solutions to the given multiple-solution task in hand without the need to strictly adhere to 

the proposed time limits, which merely served as a guide to avoid any unnecessary delay 

or prolongation of an activity. However, no time limit was explicitly proposed for whole-

group discussions of multiple solutions so that the participants would enjoy the sharing 

and learning of ideas among each other without time pressure. 

 

Table 2 

Instructions for triggering the 5E learning activities with proposed time limits 

 

Instruction 
Time allowed 

(minutes) 

1. Attempt the given task in your most familiar and preferred way,  

and label it ‘Solution 1’. 

1 

2. Explore if the task can be solved in other way(s), i.e. if other solution 

strategy/strategies can be employed to solve the task. Label them 

‘Solution 2’, ‘Solution 3’, etc.  

3 

3. Explain your solution strategies to your group members. 2  3 

4. Evaluate the various solution strategies and state the reason(s) for  

 your preferred solution(s). 

0.5 

5. Discuss and explain the solution strategies with the whole class.  

 

Table 2 shows the typical instructions which triggered the various activities pertinent to 

the 5E learning model and the proposed time limits for the respective activities. In Table 

2, Instructions 1, 2, and 4 were meant for individual activities, Instruction 3 for separate 

group activities, while Instruction 5 for whole-group activity, which was led by the first 

author. During any one activity, the prompt questions as shown in Table 1 were employed. 

The participants were not allowed to add any other solutions to their scripts during both 

within-group and whole-group discussions. They were however permitted to record any 

emerging ideas and solutions on their own paper for the sake of learning and future 

reference. The nonlinear nature of the adapted 5E learning model (Figure 1) was 

particularly relevant during the whole-group discussions. The times spent on the three 5E 

sessions ranged approximately from 37 to 71 minutes. 

  Sequence of tasks: Figure 2 illustrates the sequence of tasks administered and 

activities (see Table 2) which took place over the three sessions of the 5E learning process. 

Unlike Tasks 1a, 2a and 3a, Tasks 1b, 2b and 3b were attempted without activity 3 (i.e. 

individual group discussion) so that the change in solution strategies could be assessed for 

each participant without group influence.  

 

 

 

 

 

 

 

 

 

  Figure 2 Sequence of tasks and activities over three 5E sessions 

 

Task Session 1 

Activities 1 to 5 Activities 1, 2, 4, 5 Session 2 

Session 3 

Task 

Task 

Task 1b 

Task 3b 

Task 2b 
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Coding and Data Analysis 

 The participants’ solution strategies for each task, including those having emerged 

during the whole-group discussions, were categorized based upon their conceptual 

variations labeled 1, 2, 3, etc., as shown in Table 3. Similarly, the levels of accuracy for 

the participants’ solution strategies were classified as low (L), medium (M) and high (H).  

 

Table 3 

Emergent solution strategies for the multiple-solution tasks 

Task Solution Strategy 

1 

2 

3 

4 

1 

2 

3 

4 

5 

1 1. Completing the square by introducing a constant. 

2.  
Completing-The-Square 2. Completing the square by reverse expansion. 

 3. Completing the square by comparing coefficients. 

2 1. Deriving stationary functional value by completing the square. 

2.  
Stationary functional value 2. Deriving stationary functional value by differentiation and zero gradient. 

 3. Deriving stationary functional value by property of symmetry. 

 4. Deriving stationary functional value by use of formula. 

3 1. Expansion Factorization  Graphical analysis 

2.  
Solving quadratic inequality 2. Expansion  Factorization  Factor sign analysis 

 3. Factorization by difference of two squares  Graphical analysis 

 4. Factorization by difference of two squares  Factor sign analysis 

 5. Concept of real values and their magnitudes 

 

 The participants’ solution strategies were independently coded using the 

descriptors in Table 3 and rated as L, M, or H, by the first and the third authors. Those 

solution strategies, which were conceptually incorrect or strategy-unidentifiable due to 

incompleteness were ignored. The Kappa Measure of Agreement values for (i) the types 

and (ii) the levels of accuracy of solution strategies before (n = 72) and after (n = 108) 

intervention were (i) 0.975 and 0.962, and (ii) 0.870 and 0.795, respectively. These levels 

of inter-rater agreement are generally very good. 

 

Findings 

 

The change in A-Level participants’ ability to produce multiple solutions 

 This study generally revealed the participants’ enhanced mathematical flexibility in 

producing multiple solutions to the administered Quadratic tasks, at both individual and 

group levels throughout the 5E intervention (Table 4). The group numbers of multiple 

solutions produced had increased from 7 to 21 (200%) on Task 1, 16 to 19 (19%) on Task 

2 and 14 to 25 (79%) on Task 3 upon intervention. Individual participants’ numbers of 

solutions had increased across tasks even before intervention, namely 0 or 1 solution on 

Task 1, 1 or 2 solutions on Task 2, and 1 to 3 solutions on Task 3. Upon intervention, they 

produced 2 to 3 solutions on Task 1 and 1 to 4 solutions on both Tasks 2 and 3.  

 Further analysis revealed other noteworthy aspects. While most participants had 

extended their repertoire of solution strategies, L1 in Tasks 1 and 3 and M2 in Task 2 had 

shown the abandonment of prior strategies in adoption of new strategies. In addition, the 

participants of initial higher flexibility seemed to gain more flexibility upon intervention. 
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The change in accuracy of solutions upon intervention 

 The participants were better able to produce accurate solutions upon intervention 

(Table 4). For instance, five participants, who produced invalid solutions or solutions of 

low accuracy before intervention, were able to produce at least one solution of high 

accuracy upon intervention. Similarly, the solutions of four participants changed from 

medium to high accuracy upon intervention. Most other solutions were of high accuracy 

throughout the intervention. L1’s switch of strategy on Task 3 was the only exception. 

  

Table 4 

Participants’ solution strategies for multiple-solution tasks 

 
  Before Intervention After Intervention 

Task Participant Solution Strategy Solution Strategy 

  1 2 3 4 5 Total 1 2 3 4 5 Total 

1 

Completing-

the-square 

L1 

L2 

L3 

M1 

M2 

M3 

H1 

H2 

H3 

L 

 

 

L 

L 

H 

H 

M 

H 

    1 

0 

0 

1 

1 

1 

1 

1 

1 

 

 

 

M 

H 

H 

H 

H 

H 

H 

H 

L 

 

H 

H 

 

H 

H 

H 

M 

H 

H 

 

H 

H 

H 

H 

  2 

2 

2 

2 

2 

3 

2 

3 

3 

       7      21 

2 

Stationary 

Functional 

Value 

L1 

L2 

L3 

M1 

M2 

M3 

H1 

H2 

H3 

H 

M 

H 

 

 

H 

H 

H 

H 

H 

M 

H 

H 

M 

H 

H 

H 

H 

   2 

2 

2 

1 

1 

2 

2 

2 

2 

H 

H 

H 

H 

H 

H 

H 

H 

H 

 

 

 

H 

 

H 

H 

H 

H 

H 

 

 

 

 

 

 

H 

H 

 

 

 

 

 

 

 

H 

H 

 2 

1 

1 

2 

1 

2 

2 

4 

4 

       16      19 

3 

Solving 

Quadratic 

Inequality 

L1 

L2 

L3 

M1 

M2 

M3 

H1 

H2 

H3 

H 

H 

 

H 

H 

H 

H 

H 

H 

 

 

 

 

 

 

H 

 

 

 

 

 

 

 

H 

H 

  

 

H 

 

H 

 

 

M 

1 

1 

1 

1 

2 

1 

2 

3 

2 

 

H 

H 

H 

H 

H 

H 

H 

H 

 

 

 

 

 

 

H 

 

H 

 

 

 

H 

 

H 

H 

H 

H 

 

 

 

 

 

 

 

H 

L 

H 

H 

H 

H 

H 

H 

H 

H 

1 

2 

2 

3 

2 

3 

4 

4 

4 

       14      25 

Level of accuracy:  H(high), M(medium), L(low) 
 

Discussion 
 The findings from this study suggest that mathematical flexibility and accuracy can 

be nurtured via a nonlinear 5E learning model. While the effectiveness of multiple-

solution approach to learning could be highly context-dependent (GroBe & Renkl, 2006), 

the adapted 5E learning model seemed to have provided a context supportive of the 

nurturance of mathematical flexibility. In particular, the 5E learning model enables 

inquiry, investigation, and sound reasoning which are critical learning experiences 

(Pasley, et al., 2010). The nonlinear nature of the adapted 5E learning model has enabled 

both the participants and the teacher to freely express and explain ideas which naturally 

allow for formative assessment and remedial explanations whenever deemed appropriate 

and necessary without being rigidly adhered to planned instructional contents and flows. 

Such opportunity for both students and instructor to constructively express, explain, 
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evaluate, and clarify ideas is an important characteristic in meaningful classroom 

discourse (Coultas, 2007; Pressley, Wood, Woloshyn, Martin, King, & Menke, 1992). 

Both conceptual and procedural knowledge could become plain, comprehensible, and 

clear, especially during an explanation phase (Bybee et al., 2006). 

 Weaving through the 5E phases in exploring multiple solutions to a task is not 

without challenges though. The process of learning multiple solutions to a task was found 

to be extremely time-consuming and demanding particularly with increased complexity 

and variability of solutions (i.e. Task 3 in comparison with Tasks 1 and 2). While a 5E 

learning environment provides the opportunity for the participants to exchange ideas and 

share their respective solution strategies, the extent to which the participants would learn 

from one another may vary depending on what they actually valued: Sharing their own 

thinking to others or learning from what others have to share (Young-Loveridge, Taylor, 

& Hawera, 2005). Furthermore, the characteristics of multiple-solution tasks and their 

intended cognitive demand may vary from curricular planning to curricular 

implementation in the classroom (Stein et al., 1996). Thus, ensuring the optimal effects of 

instructions on mathematical flexibility could be a highly complex and multi-faceted 

process which requires more informed decisions from substantial research.   

 

Limitations 

 The small number of participants has weakened the extent of external validity of this 

study. In addition, it is inconclusive as to whether tasks of different nature and complexity 

would produce similar results with the 5E learning model.  

  

Recommendation 

 While this preliminary study has suggested the efficacy of learning mathematical 

flexibility in an adapted 5E learning model, further studies could be extended to reach 

higher numbers of learners of different levels of education, include mathematical domains 

of different nature and complexity, and even explore the existence of possible moderating 

variables, such as teacher’s flexible knowledge. 

      

Conclusion 

Mathematical tasks are flexibly solvable in two or more ways which may relate to 

various concepts. This study revealed that students guided by an adapted 5E learning 

model may reach higher levels of mathematical flexibility and precision. The 5E learning 

opportunity in social interaction, exploratory inclination and critical evaluation are likely 

to have contributed to the enhanced mathematical flexibility. However, while few studies 

have explored contextual influence on the learning of mathematical flexibility, more 

research is required to ascertain the key contextual attributes for enhanced mathematical 

flexibility. This study hopefully will instill further interest in educators to explore 

contextual influence on the learning of mathematical flexibility at more refined levels. 
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